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The Kac Equation with a Thermostatted Force Field
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We consider the Kac equation with a thermostatted force field and prove the existence
of a global in time solution that converges weakly to a stationary state. As there is no
an obvious candidate for the entropy functional, in this case, the convergence result is
obtained via Fourier transform techniques.
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1. INTRODUCTION

We consider the Kac equation with a particular kind of force field that conserves
energy:

∂

∂t
f + E

∂

∂v
((1 − ζ (t) v) f ) = Q( f, f ), (1)

where

ζ (t) =
∫

R

v f (v, t) dv. (2)

In the right hand side, Q is the collision term

Q( f, f )(v, t) =
∫

R

∫ π

−π

[
f (v′, t) f (v′

∗, t) − f (v, t) f (v∗, t)
] dθ

2π
dv∗. (3)

This equation is derived as the limit when N → ∞ of systems of N particles with
one-dimensional velocities.(1) The particle positions are not taken into account,
and just as in the original Kac model, and collisions between two particles with
velocities v and v∗ are modeled as rotations in the (v, v∗)-plane (see Eq. (6)).
The term E ∂

∂v
((1 − ζ (t) v) f ) in (1) which is new with respect to the original
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work of Kac, comes from adding a force field which accelerates the particles
in the intervals between collisions. A simple model would be to accelerate each
individual particle in the N-particle system with the same constant force,

dv j

dt
= E, ( j = 1, . . . , N ),

but then clearly energy would continuously be added to the system, and to com-
pensate that, the field is modified by a so-called thermostat in the following way.
Denoting the N -dimensional master vector V = (v1, . . . , vN ), the accelerating
master field is

E − E · V

|V|2 V, (4)

where E = E(1, 1, . . . , 1) ∈ R
N . To apply the thermostat amounts to projecting

the constant master field onto the surface of constant energy, |V| = const.
Thermostatted force fields have been introduced in statistical physics and in

particular in molecular dynamics, because they are useful when studying non equi-
librium stationary states.(2) In a previous paper,(3) we proved existens of stationary
solutions to Eq (1). Depending on E , the strength of the field, these stationary
states may have a singularity, but they always have a density.

In this paper we prove existence and uniqueness of a solution to the time
dependent problem, and we also prove that the solutions converge to a stationary
state. The existence result is based on integration along characteristics and suc-
cessive approximations, and is rather straight forward. The proof of convergence
to the stationary state is complicated by the lack of a natural entropy. Instead we
prove that the Fourier transform of the solutions to (1) converges point-wise to the
Fourier transform of the stationary solution.

The Kac equation is one of the simplest possible models of the Boltzmann
equation, and it does not share all the physically relevant properties. In partic-
ular, momentum is not preserved by the collisions, and this changes the long
time behavior. In fact, the Boltzmann equation with a thermostatted force field
corresponding to (1) would be

∂

∂t
f + E∇ · ((1 − ζ1(t)v) f ) = Q( f, f ), (5)

where in this case v ∈ R
3, and Q is the usual collision operator for the Boltzmann

equation. Here ζ1(t) is the first component of ζ (t) = ∫
R3 v f (v, t) dv ∈ R

3. This
corresponds to the case where each particle is accelerated by a field of type
(E, 0, 0) before the thermostat is applied. In this case the collision operator does
not contribute to the evolution of ζ (t), which converges exponentially fast to
(1, 0, 0). It follows that f (v, t) → δ(1,0,0) when t → ∞, and so the stationary states
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are trivial. They are also in equilibrium, because the Dirac mass is a degenerated
Maxwellian.

Indeed, the nonlinear Boltzmann equation may not be the most natural place
to introduce thermostatted fields. We first learned about thermostats in the context
of the Lorentz gas,(4) and seen from that point of view, it is rather be the linear
Boltzmann equation that is relevant. However, if for example a linear collision
term were added, then one would again obtain a system with non trivial stationary
states.

A different type of modified Boltzmann equations, which have attracted much
interest recently, and which also lead to non equilibrium situations, are models
for granular media. There the collisions are dissipative, and in order to find non
trivial stationary states, either the equations are rescaled according to the actual
energy, or energy is added by putting the particles in a thermal bath. Such models
are described e.g. in.(5−7)

This paper is organized as follows. First, in Sec 2 we give a formal derivation
of the force field in the Kac equation. This is formal because we assume the
propagation of chaos. Then in Sec 3, the existence and uniqueness theorem is
stated and proven. This section is essentially a condensed form of the second
author’s doctoral thesis.(8) In Sec 4 we study the Fourier transform of eq. (1), and
use this to prove that the solutions converge to a stationary state when t → ∞.
Finally, Sect 5 contains some numerical calculations to illustrate the theoretical
results.

2. THE THERMOSTATTED KAC EQUATION

In,(1) Kac derived a nonlinear Boltzmann equation as the limit, when N goes to
infinity, of a stochastic N -particle system. He considered a spatially homogeneous
gas consisting of N point-particles with one-dimensional velocities v j ∈ R, j =
1, 2, . . . , N . The time evolution of the gas forms a stochastic process, where at
exponentially distributed time intervals, binary collisions take place as follows:
a pair of velocities, say vi and v j , are selected randomly, and are assigned new
velocities, v′

i and v′
j , by a random rotation in R

2, namely

v′
i = vi cos θ − v j sin θ

v′
j = vi sin θ + v j cos θ, (6)

where the scattering angle, θ , is chosen from a uniform distribution over [−π, π ).
Distributions favoring some collisions over others have also been considered.(9)

Clearly v2
i + v2

j = v′
i
2 + v′

j
2, and thus the total energy,

∑N
i=1 v2

i , is conserved in the
process. Hence, the Kac model defines a jump process on the (N − 1)-dimensional
sphere S

N−1, which is normalized to have radius
√

N . For this process to mimic
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a system of real particles, one takes the collision frequency, i.e. the rate in the
exponential distribution, to be proportional to N .

Let �N be the probability density of points in phase space each of which
evolve according to the above Kac process. Then �N satisfies the master equation

∂

∂t
�N (V, t) = K(�N )(V, t), (7)

where V = (v1, . . . , vN ) ∈ S
N−1(

√
N ). K is the linear operator given by

K(�N ) = N (K̃ − I)(�N ), (8)

where I denotes the identity operator, and K̃ is defined by

K̃(ψN )(V, t) =
(

N

2

)−1 ∑
1≤i< j≤N

1

2π

∫ π

−π

�N (Ai j (θ )V, t) dθ,

with Ai j (θ )V = (v1, . . . , v
′
i , . . . , v

′
j , . . . , vN ).

Let k ≤ N be fixed. Define the k-particle marginal f N
k by

f N
k (v1, . . . , vk, t) =

∫
�k

�N (v1, . . . , vN , t) dσk, (9)

where �k = S
N−1−k(

√
N − ∑k

i=1 v2
i ) and dσk denotes the normalized surface

measure on �k . The family {�N }∞N=1 of probability densities is said to have the
Boltzmann property, if

lim
N→∞

f N
k (v1, . . . , vk, t) =

k∏
j=1

lim
N→∞

f N
1 (v j , t).

The main result in(1) is that, under suitable conditions on the initial data, the one
particle marginal, f N

1 , converges, as N → ∞, to a solution f of the Kac equation,

∂

∂t
f (v, t) = Q( f, f )(v, t), (10)

where the collision term, Q, has the form (3).
In this paper Kac’s original stochastic model is modified by incorporating an

external uniform force field which accelerates the particles between the collisions.
This field acts equally on each particle, and in order to keep the total energy
constant, it is projected onto the tangent plane to the energy surface – S

N−1
(√

N
)
.

More precisely, between collisions, V evolves according to

dV

dt
= E − E · V

|V|2 V, (11)
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where E = E(1, . . . , 1) ∈ R
N . Eq. (11) can also be written component-wise as

dvi

dt
= E

(
1 − J

U
vi

)
, i = 1, . . . , N ,

where J = 1
N

∑N
i=1 vi and U = 1

N

∑N
i=1 v2

i .

Let �N (V, 0) be an initial probability distribution of points on S
N−1(

√
N ). If

each of these points evolve according to the modified Kac process, then �N (V, t)
satisfies the master equation

∂

∂t
�N + ∇ · (F �N ) = K(�N ), (12)

where K is as in (8), and F is the thermostatted force field given by

F = E − E · V

|V|2 V = E

(
1 − J

U
v1, . . . , 1 − J

U
vN

)
.

Assume that the family {�N}∞N=1 form a sequence of C1-solutions to (12). We
differentiate f N

1 with respect to t , use (12), and rearrange the resulting terms to
get

∂

∂t
f N
1 (v1, t) +

∫
�1

∇ · (F �N ) dσ1 =
∫

�1

K(�N ) dσ1. (13)

If the densities �N are symmetric with respect to permutation of the argu-
ments, and if the family {�N }∞N=1 satisfies the Boltzmann property for all t , then
it is not difficult to show that the right hand side of (13) converges to the collision
operator (3), when N → ∞. The difficulty lies in proving that the Boltzmann
property propagates in time. One says then that “chaos propagates,” and Kac
proved that this is true in the case of the Kac model. In this paper we assume
that the propagation of chaos still holds with a force term, and hence that the
right-hand side does not change by the addition of a force term.

The second term on the left-hand side of (13) is studied in,(8) where it is
shown that under the assumption of propagation of chaos, and some additional
regularity condition,∫

�1

∇ · (F �N ) dσ1 → E
∂

∂v1
((1 − ζ (t)v1) f ),

when N → ∞. The function ζ (t) is given by (2), and it is tacitly assumed that U,
the mean energy of a particle, is equal to one. The main effort is made in proving
that ∫

�1

(
1 − J

U
v1

)
�N dσ1 → (1 − ζ (t) v1) f,
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when N → ∞. This then shows, at least formally, that, if f (v, t) = lim
N→∞

f N
1 (v, t)

exists, then f satisfies (1), which constitutes the thermostatted Kac equation. To
make the proof rigorous, one needs to prove that propagation of chaos holds.

3. EXISTENCE OF SOLUTION

In this section we study the initial value problem to Eq. (1). The main result
of this section is

Theorem 1. Let f0 ≥ 0 with
∫

R
f0(v) dv = 1 be given. Then there exists a non-

negative f ∈ C((0,∞); L1(R)), which is a mild solution to (1)-(2) with f (v, 0) =
f0(v), and such that

∫
R

f (v, t) dv = ∫
R

v2 f (v, t) dv = 1.

Remark 1. By a mild solution we mean a solution to the integral equation
that is obtained by integration along characteristics, and here we actually mean
exponential mild solution. The exact form of the integrated equation can be seen
in Eq. (27) and (28) below. This notion of solutions is weaker than that of strong
solutions, where all terms in (1) are assumed be well defined in L1.

We first state and prove a result concerning the function ζ (t).

Lemma 1. Let f0 ≥ 0 with
∫

R
f0(v) dv = 1 be given. Assume that there exists

f ≥ 0, solution to (1)-(2) such that
∫

R
f (v, t) dv = 1, and |v| f (v, t) → 0 as

|v| → ∞, for each t ≥ 0. Then ζ (t) satisfies

d

dt
ζ (t) = E (1 − ζ (t)2) − ζ (t), (14)

ζ (0) = ζ0 ≡
∫

R

v f0(v) dv. (15)

This can be solved explicitly as

ζ (t) = ζ+(ζ− − ζ0) − ζ−(ζ+ − ζ0)e−√
1+4E2 t

(ζ− − ζ0) − (ζ+ − ζ0)e−√
1+4E2 t

, (16)

where

ζ± = 2E

1 ± √
1 + 4E2

. (17)
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Proof. Since
∫

R
f (v, t) dv = 1, the collision term can be written as Q( f, f ) =

Q+( f, f ) − f , where

Q+( f, f )(v, t) =
∫

R

∫ π

−π

f (v′, t) f (v′
∗, t)

1

2π
dθ dv∗.

Because
∫

R
v Q+( f, f ) dv = 0, we get∫

R

v Q( f, f ) dv = − ζ (t). (18)

From the definition of ζ (t) it also follows that

d

dt
ζ (t) =

∫
R

v
∂

∂t
f (v, t) dv.

Using (1) and doing a partial integration directly leads to Eq. (14)–(15) which has
the unique solution (16). �

Next we study the initial value problem

∂

∂t
f + E

∂

∂v
((1 − ζ̄ (t) v) f ) = Q( f, f ), (t > 0), (19)

f (v, 0) = f0(v) , (20)

where ζ̄ (t) is given by (16). This is exactly like (1)–(2) except that ζ (t) =∫
R

v f (v, t)dv is replaced by the known function ζ̄ (t).
First we rewrite (19) as

∂

∂t
f + E(1 − ζ̄ (t) v)

∂

∂v
f + (1 − E ζ̄ (t) v) f = Q+( f, f ). (21)

This constitutes a first-order semi-linear equation that can be solved by integra-
tion along characteristics and iterative procedure as used by Arkeryd.(10) After
integration along characteristics (21) becomes

d

dt
f # + (1 − E ζ̄ (t)) f # = Q+( f, f )#, (22)

where, for each v ∈ R, we use the notations

f #(v, t) = f (V (v, t), t), (23)

Q+( f, f )#(v, t) = Q+( f, f )(V (v, t), t). (24)

Here we make use of the transformation

V (v, t) = ψt (v) ≡ v e−λ(t) + E e−λ(t)
∫ t

0
eλ(s) ds, (25)
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where λ(t) = E
∫ t

0 ζ̄ (s)ds. The Jacobian of the transformation in (25) is J =
e−λ(t) > 0. Moreover,

ψ−1
t (V ) = V eλ(t) − E

∫ t

0
eλ(s) ds. (26)

For notational convenience, we write �(t) = ∫ t
0

(
1 − E ζ̄ (s)

)
ds or, in other words

�(t) = t − λ(t).
Let T > 0 be fixed. The integral form of (22) in the time interval [0, T ] is

f #(v, t) = e−�(t) f #
0 (v, 0) + e−�(t)

∫ t

0
e�(τ ) Q+( f, f )#(v, τ )dτ. (27)

Using (26), and the notations in (23) and (24), we can rewrite (27) in terms of f

f (v, t) =  f0 ( f )(v, t), (28)

where

 f0 ( f )(v, t) = e−�(t) f0(ψ−1
t (v))

+ e−�(t)
∫ t

0
e�(τ ) Q+( f, f )(ψτ ◦ ψ−1

t (v), τ ) dτ. (29)

Theorem 1 is an immediate consequence of the following proposition.

Proposition 1. Let f0 ≥ 0 with
∫

R
f0(v) dv = 1, and

∫
R

|v|3 f0(v) dv < ∞ be
given. Then there exists a unique, non-negative f ∈ C((0,∞); L1(R)), which is a
mild solution to (19)-(20). This solution satisfies

∫
v f (v, t) dv = ζ̄ (t), in addition

to mass and energy being one.

Remark 2. The condition that
∫

R
|v|3 f0(v) dv be bounded could surely be re-

laxed, but we keep it here for convenience.

Proof. We define two different sequences of approximations, based on Eq. (28),
{ f (n)(·, t)}∞n=1 and {g(n)(·, t)}∞n=1. The first one is obtained as

f (1)(v, t) = 0, (30)

f (n)(v, t) =  f0 ( f (n−1))(v, t), (n > 1) (31)

and has the merit of being monotonous, from which one may conclude that there is
a limit f ∈ L1, and that this limit is non-negative. The second sequence is defined
in the same way, except that

g(1)(v, t) = f0(v).

This sequence is not necessarily monotonous, but has the advantage that moments
up to the order two can be computed explicitly (and have the desired values), and
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that higher order moments may be easily estimated. In fact we claim that for each
t ≥ 0, and for each n ∫

R

g(n)(v, t) dv = 1, (32)

∫
R

v g(n)(v, t) dv = ζ̄ (t), (33)

∫
R

v2 g(n)(v, t) dv = 1. (34)

where ζ̄ is given in (16), and moreover that all higher moments that initially are
bounded remain bounded.

To prove the proposition, it suffices to show that g(n) → f in L1 which, in view
of the boundedness of

∫
R

v2 g(n)(v, t) dv, would imply that
∫

R
v f (v, t) dv = ζ̄ (t).

We recall the following easy relations (the first one being a direct consequence
of the bilinearity of Q+)

Q+( f, f ) − Q+(g, g) = Q+( f − g, f ) + Q+(g, f − g), (35)∫
R

Q+(g, g)(w, τ ) dw =
(∫

R

g(w, τ ) dw

)2

, (36)

∫
R

w Q+(g, g)(w, τ ) dw = 0, (37)

∫
R

w2 Q+(g, g)(w, τ ) dw =
∫

R

g(w, τ ) dw

∫
R

w2 g(w, τ ) dw. (38)

Using (29), (35), and the positivity of Q+, it follows immediately that if f n ≤ gn ,
then f n+1 ≤ gn+1. But f1 ≤ g1, and so f n ≤ gn holds for all n (this is detailed
below). We thus have∫

R

∣∣ f − g(n)
∣∣ dv = 2

∫
{ f ≥g(n)}

(
f − g(n)

)
dv −

∫
R

(
f − g(n)

)
dv.

But
∫

R
f (v, t) dv = ∫

R
g(n)(v, t) dv = 1, so we find∫

R

∣∣ f − g(n)
∣∣ dv = 2

∫
{ f ≥g(n)}

(
f − g(n)

)
dv

≤ 2
∫

R

(
f − f (n)

)
dv → 0,

when n → ∞. From the remark above, we know that
∫

R
|v|3g(n)dv and from that

we may conclude also that
∫

R
v2 f (v, t) dv = 1.
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The same argument implies the uniqueness result in Theorem (1). In fact, if
f∗(v, t) is any solution to (28) then

f∗(v, t) =  f0 ( f∗)(v, t).

The monotonicity of Q+, and thus that of  f0 , then implies that, for all n,

f (n)(v, t) ≤ f∗(v, t),

and the same holds for f (v, t) = limn→∞ f (n)(v, t). But∫
R

f∗(v, t)dv =
∫

R

f (v, t)dv = 1,

and thus f∗ = f .
To conclude the proof of the theorem we need to prove that the sequences

{ f (n)(·, t)}∞n=1 and {g(n)(·, t)}∞n=1 behave as stated. We begin by the first one of
these.

From the monotonicity of Q+ and the assumption that f0 ≥ 0 we deduce that
the iterates are all non-negative: It is immediate that

f (2)(v, t) = e−�(t) f0(ψ−1
t (v)), (39)

from which we see f (2)(v, t) ≥ f (1)(v, t) for all v ∈ R. Suppose now, for some
n ≥ 3, that f (n−1) ≥ f (n−2). The result now follows by induction and the formula

e−�(t)
∫ t

0
e�(τ )

[
Q+

(
f (n−1) − f (n−2), f (n−1)

)
+ Q+

(
f (n−2), f (n−1) − f (n−2)

)]
dτ. (40)

Since
∫

R
f0(v) dv = 1, the result in (39) gives

∫
R

f (2)(v, t) dv = e−t ≤ 1. Suppose
now, for some n ≥ 3, that

∫
R

f (n−1)(v, t) dv ≤ 1. Then∫
R

f (n)(v, t) dv = e−t + e−t

∫ t

0
eτ

∫
R

Q+
(

f (n−1), f (n−1)
)
(z, τ ) dz dτ.

Using (36) and writing M (n)(t) = ∫
R

f (n)(v, t)dv, we find that

M (n)(t) = e−t + e−t
∫ t

0
eτ M (n−1)(τ )2dτ.

Using the induction hypothesis gives

M (n)(t) =
∫

R

f (n)(v, t) dv ≤ e−t + e−t
∫ t

0
eτ dτ = 1.

The bounded, monotonically increasing sequence { f (n)(·, t)}∞n=1 of non-negative
terms has a non-negative limit f (·, t) in L1(R) such that f (n) → f as n → ∞.
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Writing M(t) = ∫
R

f (v, t)dv, we find that

M(t) = e−t + e−t
∫ t

0
eτ M(τ )2dτ,

which has the unique solution M(t) ≡ 1. From this we conclude, by Levi’s theorem
that

∫
R

f (v, t) dv = 1. This says that f solves (28), as stated.
Next we turn to show that the sequence {g(n)(·, t)}∞n=1 satisfies (32), (33), and

(34). The assumption on f0 gives that
∫

R
g(1)(v, t) dv = 1. We prove, by induction,

that the same holds for all n. Suppose, for some n ≥ 2, that
∫

R
g(n−1)(v, t) dv = 1.

Integrating (31) with fn replaced by gn , and using (25) and (35), gives

et
∫

R

g(n)(v, t) dv =
∫

R

f0(v) dv +
∫ t

0
eτ dτ.

The right hand side sums up to be et . With this we conclude, for all t ≥ 0, and by
induction for all n, that ∫

R

g(n)(v, t) dv = 1.

To prove (33), we multiply both sides of (31) (with f replaced by g) by v, and
integrate the result∫

R

v g(n)(v, t) dv = e−�(t)
∫

R

v f0(ψ−1
t (v)) dv

+ e−�(t)
∫

R

∫ t

0
e�(τ )vQ+(g(n−1), g(n−1))(ψτ ◦ ψ−1

t (v), τ ) dτdv. (41)

Use of (26) makes the first term in the above sum to be

e−t−λ(t)(ζ0 + E q(0, t)), (42)

where, for τ ≤ t , q(τ, t) = ∫ t
τ

eλ(s) ds.
Using (25) and (26) once more, the second term in the sum (41) equals

e−t−λ(t)
∫

R

∫ t

0
eτ

[
veλ(τ ) + Eq(τ, t)

]
Q+(g(n−1), g(n−1))(v, τ ) dτdv.

Because
∫

R
w Q+(g, g)(w, τ ) dw = 0, this reduces to

E e−t−λ(t)
∫ t

0
eτ q(τ, t) dτ. (43)

Combining (42) and (43) makes the sum in (41) to take the form

e−t−λ(t)

(
ζ0 + E q(0, t) + E

∫ t

0
eτ q(τ, t) dτ

)
.
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We further note, through integration by parts, that∫ t

0
eτ q(τ, t) dτ = −q(0, t) +

∫ t

0
es+λ(s) ds.

Thus we have∫
R

v g(n)(v, t) dv = ζ0 e−t−λ(t) + E e−t−λ(t)
∫ t

0
es+λ(s) ds. (44)

We are now left to show that the right hand side of (44) and ζ̄ (t) are equal. Towards
this, we let

ζ̂ (t) = ζ0 e−t−λ(t) + E e−t−λ(t)
∫ t

0
es+λ(s) ds.

and note that, ζ̂ (t) fulfills

d

dt
(et ζ̂ (t)) = E et (1 − ζ̄ (t) ζ̂ (t)),

with ζ̂ (0) = ζ0. Similarly, ζ̄ (t) satisfies

d

dt
(et ζ̄ (t)) = E et (1 − ζ̄ (t) ζ̄ (t)),

with ζ̄ (0) = ζ0.
Since ζ̄ (t) is bounded we conclude that ζ̂ (t) = ζ̄ (t). This together with (44)

finally implies the result that∫
R

v g(n)(v, t) dv = ζ̄ (t).

To prove (34) we first note

e�(t)
∫

R

v2 g(n)
(
ψt (v), t

)
dv =

∫
R

v2 f0(v) dv

+
∫

R

∫ t

0
e�(τ )v2 Q+

(
g(n−1), g(n−1)

)
(ψτ (v), τ ) dτ dv. (45)

Use of (25), with the results from (32) and (33), makes the left hand side to be
equal to

et+2λ(t) M (n)
2 (t) − 2 E ζ̄ (t) q(0, t) et+λ(t) + E2 q(0, t)2 et ,

where M (n)
2 (t) = ∫

R
v2g(n)(v, t) dv.

Use of (25) and (26) with the remarks in (36)–(38) makes the second term in
the sum at the right hand side of (45) to take the form∫ t

0
eτ+2λ(τ ) M (n−1)

2 (τ ) dτ + E2
∫ t

0
eτ q(τ )2 dτ.
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We put these pieces together, rearrange the terms to rewrite (45) as

et+2λ(t) M (n)
2 (t) = 2E ζ̄ (t)q(0, t)et+λ(t) − E2q(0, t)2et + 1

+
∫ t

0
eτ+2λ(τ ) M (n−1)

2 (τ ) dτ + E2
∫ t

0
eτ q(τ )2dτ. (46)

Next we study the time derivatives of both sides of (46). But first we note

2E
d

dt

(
ζ̄ (t) q(0, t) et+λ(t)

) = 2 λ′′(t) q(0, t) et+λ(t) + 2
(
λ′(t) + λ′(t)2

)
× q(0, t) et+λ(t) + 2 λ′(t) et+2λ(t).

We also have λ′′(t) = E2 − λ′(t) − λ′(t)2 , so that

2E
d

dt

(
ζ̄ (t) q(0, t) et+λ(t)

) = 2 E2 q(0, t) et+λ(t) + 2 λ′(t) et+2λ(t).

Since d
dt q(0, t) = eλ(t),

− E2 d

dt
(q(0, t)2 et ) = −2E2q(0, t)et+λ(t) − E2q(0, t)2et .

Combining this with a trivial differentiation of the last two terms in (46) gives

d

dt

(
et+2λ(t) M (n)

2 (t)
) = 2 λ′(t) et+2λ(t) + et+2λ(t) M (n−1)

2 (t).

We rewrite the right hand side of this and get

d

dt

(
et+2λ(t) M (n)

2 (t)
) = 2 λ′(t) et+2λ(t) + et+2λ(t) + et+2λ(t)

(
M (n−1)

2 (t) − 1
)
.

Supposing that M (n−1)
2 (t) = 1, then the last term in the above sum is zero so that

the remaining terms can be rewritten as

d

dt

(
et+2λ(t) M (n)

2 (t)
) = d

dt

(
et+2λ(t)

)
.

Integration and rearrangement of the terms gives

M (n)
2 (t) = (

M (n)
2 (0) − 1

)
e−t−2λ(t) + 1.

This leads to the result that M (n)
2 (t) = 1, namely∫
R

v2 g(n)(v, t) dv = 1.

Hence we have proven that (32), (33), and (34) hold, and this concludes the proof
of Proposition 1.
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Remark 3. In very much the same way one can prove that all moments that
initially are bounded remain bounded. In fact, one can find a closed system of
ordinary differential equations for the moments Mk(t), (k = 1, 2, . . .) , of the
solutions to the thermostatted Kac equation:

d

dt
Mk(t) = k E Mk−1(t) − k E ζ (t) Mk(t) − Mk(t) +

∫
R

vk Q+( f, f )(v) dv,

(47)
where the last term can be computed explicitly in terms of M j (t), j ≤ k.

In(3) we studied the stationary problem corresponding to (1), namely

E
d

dv
((1 − ζ v) f (v)) = Q( f, f )(v), (48)

where ζ = ζ+ is given by (17). The main result in(3) is

Theorem 2. For all field strengths E > 0, the stationary problem (48) has a
solution f∞ > 0, that satisfies

i)
∫

R
f∞(v) dv = 1,

∫
R

v f∞(v) dv = ζ, and
∫

R
v2 f∞(v)dv = 1.

ii) Moments of any order of f∞ are finite.
iii) f∞ ∈ C(R{κ}), where κ = 1

ζ
.

iv) For E <
√

2, f∞ ∈ C(R);
for E = √

2, f∞ has a logarithmic singularity near v = √
2; and

for E >
√

2, f∞ has a singularity of the form |v − κ|γ near v = κ , where
γ = 1

E ζ
− 1.

4. CONVERGENCE TO A STATIONARY STATE

The purpose of this section is to prove that the solutions to (1) converge to the
stationary state as t → ∞. For the Boltzmann equation, this is usually achieved
by showing that the entropy is a decreasing functional attaining its infimum only
at the equilibrium solution. In the current case, there is no obvious choice of
an entropy, and so instead we will use a method introduced.(11,12) We recall the
technique, which is based on the Fourier transform.

The Fourier transform of Eq. (1) without the force term, obtained by multi-
plication by exp(ivξ ) and integration over R, is

∂ f̂ (ξ, t)

∂t
=

∫ π

−π

(
f̂ (ξ cos θ, t) f̂ (ξ sin θ, t) − f̂ (ξ, t) f̂ (0, t)

) dθ

2π
. (49)
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The mass is conserved (and set equal to one, f̂ (0, t) ≡ 1) and therefore (49) can
be written as

∂ f̂ (ξ, t)

∂t
+ f̂ (ξ, t) = Q̂+( f̂ , f̂ )(ξ ), (50)

where

Q̂+( f̂ , ĝ)(ξ ) =
∫ π

−π

f̂ (ξ cos θ, t)ĝ(ξ sin θ, t)
dθ

2π
.

Also energy is conserved (equal to one), so − f̂ ′′(0, t) = ∫
R

v2 f (v, t) dv ≡ 13

and if in addition
∫

R
f (v, 0) dv = 0, then it remains zero, and so f̂ ′(0, t) ≡ 0.

If f and g are two such solutions, their difference satisfies f̂ (ξ, t) − ĝ(ξ, t) =
o(ξ 2), and if moments of order three of f and g are both bounded then for all
p ∈ [0, 1),

w(ξ, t) = f̂ (ξ, t) − ĝ(ξ, t)

|ξ |2+p

is bounded for all times, and

∂w(ξ, t)

∂t
+ w(ξ, t) =

∫ π

−π

(w(ξ cos θ, t)| cos θ |2+p f̂ (ξ sin θ, t) + w(ξ sin θ, t)

| sin θ |2+p ĝ(ξ cos θ, t))
dθ

2π
. (51)

From this we can deduce that for any X > 0,

sup
|ξ |<X

∣∣∣∣∂w(ξ, t)

∂t
+ w(ξ, t)

∣∣∣∣ ≤ sup
|ξ |<X

|w(ξ, t)|
∫ π

−π

(| cos θ |2+p + | sin θ |2+p
) dθ

2π

and it follows that

sup
|ξ |<X

|w(ξ, t)| ≤ sup
|ξ |<X

|w(ξ, 0)| e−(1−α) t ,

where α = ∫ π

−π
(| cos θ |2+p + | sin θ |2+p) dθ

2π
< 1. Thus f̂ − ĝ converges point-

wise to zero, exponentially in time. In the particular case where g is the Maxwellian
with correct moments, this proves that the probability density f converges to equi-
librium in distribution.

When the force term is added to (49) we cannot obtain exactly the same re-
sult, because i f̂ ′(0, t) = ζ f (t) = ∫

R
f (v, t)vdv, which depends on time. (Note the

3 In this section, the symbol ′, always denotes a derivative with respect to ξ .
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subscript f on ζ , which is important when two different functions are considered).
Instead we will now study

u(ξ, t) = f̂ (ξ, t) + i(ζ f (t) − ζg(t)) φ(ξ ) − ĝ(ξ, t). (52)

where φ(ξ ) is a smooth bounded function that satisfies φ(ξ ) = ξ for |ξ | ≤ 1. The
Fourier coefficients of u up to order two vanish, so u(ξ, t)/|u|2+p is well-defined
for all t , if 0 ≤ p < 1.

The Fourier transform of Eq. (1) is

∂ f̂ (ξ, t)

∂t
+ i Eξ f̂ (ξ, t) + Eζ f (t)ξ f̂ ′(ξ, t) + f̂ (ξ, t) = Q̂+( f̂ , f̂ )(ξ, t).

(More correctly, one could have written Q̂+( f̂ (·, t), f̂ (·, t))(ξ ) in the right hand
side.) Then

∂u

∂t
+ u = iφ(ξ )

(
dζ f

dt
− dζg

dt

)
+ iφ(ξ )(ζ f − ζg) − i Eξ f̂ − Eζ f ξ f̂ ′

+ i Eξ ĝ + Eζgξ ĝ′ + Q̂+( f̂ − ĝ, f̂ ) + Q̂+(ĝ, f̂ − ĝ)

After rearranging the terms, we find

∂u

∂t
+ u = i

(
dζ f

dt
− dζg

dt

)
φ − Eξ (ζ f − ζg) f̂ ′ − Eξζgu

+ Eiξζg(ζ f − ζg)φ′ − i Eξu − Eξ (ζ f − ζg)φ + Q̂+(u, f̂ )

− i(ζ f − ζg)Q̂+(φ, f̂ ) + Q̂+(ĝ, u) − i(ζ f − ζg)Q̂+(ĝ, φ).

Next we note that

E ξ (ζ f − ζg) f̂ ′ = Eξ (ζ f − ζg)( f̂ ′ + iζ f φ
′ + φ)

+ i E ξ ζ f (ζ f − ζg)φ′ + E ξ (ζ f − ζg)φ,

and that the first of these terms is O(|ξ |3) near ξ = 0, and that it is bounded by
C(1 + |ξ |). Moreover, d

dt ζ f = E(1 − ζ 2
f ) − ζ f . A new rearrangement of the terms

now gives

∂u

∂t
+ u + i Eξu + Eξζgu = Q̂+(u, f̂ ) + Q̂+(ĝ, u) + E i(ζ 2

f − ζ 2
g )

× (ξφ′ − φ) − Eξ (ζ f − ζg)( f̂ ′ + iζ f φ
′ + φ)

− i(ζ f − ζg)(Q̂+(φ, f̂ ) + Q̂+(ĝ, φ))



The Kac Equation with a Thermostatted Force Field 875

For |ξ | ≤ 1, φ(ξ ) = ξ , and so in this interval

Q̂+(φ, f̂ ) =
∫ π

−π

φ(ξ ) cos(θ ) f̂ (ξ sin(θ ))
dθ

2π

= φ(ξ )
∫ π

−π

cos(θ )( f̂ (ξ sin(θ )) − 1 + iζ f φ(ξ ) sin(θ ))
dθ

2π

+φ(ξ )2
∫ π

−π

cos(θ )(1 − iζ f φ(ξ ) sin(θ ))
dθ

2π
.

The second of these integrals vanish, and the first one is O(|ξ |3) for small ξ . For
large ξ , the expression is bounded. A similar calculation can be done for Q̂+(ĝ, φ),
and in summary we obtain

∂u

∂t
+ u + i Eξu + Eξζgu = Q̂+(u, f̂ ) + Q̂+(ĝ, u) + (ζ f − ζg)

× (Eξ R1(ξ, t) + R2(ξ, t)),

where |R1(ξ, t)| ≤ min
(
C, |ξ |2) and |R2(ξ, t)| ≤ min

(
C, |ξ |3) for some constant

C .
Although the calculations can be carried out in exactly the same way for

a general solution ĝ, we now concentrate on the case where ĝ is the Fourier
transform of the stationary solution to (1). Then ζg = ζ+ = (1 + √

1 + 4E2)/2E ,
and it follows directly from (16) that ζ f (t) − ζg s bounded by C exp(−√

1 + 4E2t).
For any function w(ξ, t), we now define w�(ξ, t) = w

(
eEζ+tξ, t

)
. Expressed

in this way,

∂u�

∂t
+ u� + EiξeEζ+t = Q̂+(u�, f̂ �) + Q̂+(ĝ�, u�) + (ζ f − ζ+)

× (EξeEζ+t R�

1 + R�

2).

We have used the fact that Q̂+(u, v)� = Q̂+(u�, v�), which is easily verified.
Next with v(ξ, t) = u�(ξ, t) et ,

∂v

∂t
+ EiξeEζ+tv = Q̂+(v, f̂ ) + Q̂+(ĝ, v) + et (ζ f − ζ+)(EξeEζ+t R�

1 + R�

2),

from which it follows that

∂|v|
∂t

≤ Q̂+
(|v|, | f̂ |) + Q̂+(|ĝ|, |v|) + et |(ζ f − ζ+)(EξeEζ+t R�

1 + R�

2)|,

or, using that | f̂ | ≤ 1 and |ĝ| ≤ 1,

|v(ξ, t)| ≤ |v(ξ, 0)| +
∫ t

0

∫ π

−π

(|v(ξ cos θ, τ )| + |v(ξ cos θ, τ )|) dθ

2π
dτ

+
∫ t

0
eτ |(ζ f (τ ) − ζ+)(EξeEζ+,τ R�

1(ξτ ) + R�

2(ξ, τ ))| dτ. (53)
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The next step is to divide this expression by |ξ |2+p, and to take the supremum over
|ξ | ≤ X just like in the case with no force term. To estimate the source term, recall
that R1 and R2 are bounded and of the order |ξ |2 and |ξ |3, respectively, when ξ is
small. Hence, for any X > 0,

sup
|ξ |≤X

|R�

1(ξ, t)|
|ξ |1+p

= sup
|ξ |≤X

|R1(ξeEζ+t , t)|
|ξ |1+p

≤ C e(1+p)Eζ+t ,

and

sup
|ξ |≤X

|R�

2(ξ, t)|
|ξ |2+p

≤ C e(2+p)Eζ+t ,

where the constants are independent of X. Estimating the first integral on the right
hand side of Eq. (53) in the same way as the estimate of Q̂+ in (51) we get

sup
|ξ |≤X

|v(ξ, t |
|ξ |2+p

≤ sup
|ξ |≤X

|v(ξ, 0|
|ξ |2+p

+ α

∫ t

0
sup
|ξ |≤X

|v(ξ, τ |
|ξ |2+p

dτ

+
∫ t

0
eτ e(2+p)Eζ+τ |(ζ f (τ ) − ζ+)| dτ,

where α = ∫ π

−π
(| sin θ |2+p + | cos θ |2+p) dθ

2π
. Because |(ζ f (τ ) − ζ+)| ≤

Ce−√
1+4E2t , the second integral is bounded by C(E, p) e(1+(2+p)Eζ+−√

1+4E2)t ,
and using the Gronwall inequality,

sup
|ξ |≤X

|v(ξ, t)|
|ξ |2+p

≤ sup
|ξ |≤X

|v(ξ, 0)|
|ξ |2+p

eα t + C(E, p)e(1+(2+p) E ζ+−√
1+4E2)t .

This holds for all X, and hence, with v(ξ, t) = et u(ξ eEζ+t , t),

sup
|ξ |

|u(ξeEζ+t , t)|
|ξ |2+p

≤ sup
|ξ |

|u(ξ, 0)|
|ξ |2+p

e(α−1)t + C(E, p)e((2+p)Eζ+−√
1+4E2)t .

Then, for all ξ , and all t ≥ 0,

|u(ξeEζ+t , t)| ≤ |ξ |2+p
(
C0 e(α−1)t + C(E, p) e((2+p)Eζ+−√

1+4E2)t
)
,

or, which is the same,

|u(ξ, t)| ≤ |ξ |2+p
(
C0e(α−1−(2+p)Eζ+)t + C(E, p)e−√

1+4E2t
)
,

where C0 depends only on the initial data. Now we recall that u(ξ, t) = f̂ (ξ, t) −
ĝ(ξ ) + iφ(ξ )(ζ f (τ ) − ζ+), where ĝ is the Fourier transform of the solution to the
stationary equation, and therefore

| f̂ (ξ, t) − ĝ(ξ )| ≤ |ξ |2+p
(
C0e(α−1−(2+p)Eζ+)t + C(E, p)e−√

1+4E2t
)

+φ(ξ )
∣∣ζ f (t) − ζ+

∣∣ .
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This implies that | f̂ (ξ, t) − ĝ(ξ )| → 0 point-wise, exponentially fast, and also
that

sup
|ξ |≤X

| f̂ (ξ, t) − ĝ(ξ )|
|ξ | ≤ C X1+pe−√

1+4E2t .

In conclusion we have proven the following theorem:

Theorem 3. Let f̂ (ξ, t) be the Fourier transform of the solution to Eq. (1), and
let ĝ(ξ ) be the Fourier transform of the solution to the stationary problem. Then

| f̂ (ξ, t) − ĝ(ξ )| ≤ (|ξ |2+p + |ξ |)e−√
1+4E2t ,

which implies that f (v, t) converges in distribution to the stationary state

−1 0 1
0

0.5

1

1.5

2

t=0

−1 0 1
0

0.5

1

1.5

2

t=5

−1 0 1
0

0.5

1

1.5

2

t=15

−1 0 1
0

0.5

1

1.5

2

t=50

Fig. 1. Time evolution of f (v, t), the solution to the thermostatted Kac equation. (simulated with the
Monte Carlo method using N = 5000 particles, E = √

2.)
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Fig. 2. Time evolution of the first five moments of f according to (47). (E = √
2).

5. SIMULATION RESULTS

In this section we present some numerical approximations of the solutions to
the thermostatted Kac equation using the Monte Carlo method. This corresponds
to simulating a large number of trajectories to the jump processes defined on
S

N−1(
√

N ), where N is the number of particles. These trajectories can be computed
exactly thanks to the fact that there is an explicit solution to the evolution of V in
between the jumps.

For sufficiently large N we expect the one-particle marginal f N
1 (v, t) to

approach f (v, t)–the solution to (48). Figure 1 shows the time evolution starting
from an initial data consisting of two Dirac masses. The number of particles, N
was 5000, and the force field had strength E = √

2. As time evolves, the density
approaches the stationary state, which according to the study,(3) has a logarithmic
singularity in this case.

Having a closed system of ordinary differential equations for Mk(t) =∫
R

vk f (v, t) dv we can explicitly compute the first few. Figure 2 shows the time

evolution of the first five moments of the solution according to (47) with E = √
2 .

For the three dimensional Boltzmann equation, the density converges to a
Dirac mass when t → ∞. This is illustrated in the last example, where the force
field is E = (0.1, 0, 0), and the simulation is carried out with 5000 particles. The
initial distribution of the velocities is taken to be

f0(v1, v2, v3) = 1

2
(δ−1(v1) + δ+1(v1))

1

2π
exp

( − v2
2 − v2

3

)
.
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Fig. 3. Time evolution of the v1-marginal of f (v, t) of the solution to the thermostatted Boltzmann
equation. (simulated with 5000 particles). In fact, with α(t) and β(t) suitably chosen, g(v, t) = f ((v −
ζ (t))/α(t), β(t)) satisfies the usual spatially homogeneous Bolzmann equation, which explains the
apparent relaxation to a peaked Maxwellian.

The v1-marginal,
∫

f (v1, v2, v3, t) dv2dv3 is shown in Fig. 3. The other marginals
converge to a Dirac measure at zero.
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